
www.manaraa.com

Extensible Data Management in the Middle-Tier

Brian F. Cooper1,2, Neal Sample1,2, Michael J. Franklin1,3, Joshua Olshansky1 and Moshe Shadmon1

1RightOrder Inc.
3850 N. First St.

San Jose, CA 95134 USA

2Department of Computer Science
Stanford University

Stanford, CA 94305 USA

3Computer Science Division
University of California

Berkeley, CA 94720 USA

{cooperb,nsample}@db.stanford.edu, franklin@cs.berkeley.edu, {josho,moshes}@rightorder.com

Abstract

Current data management solutions are largely
optimized for intra-enterprise, client-server applications.
They depend on predictability, predefined structure, and
universal administrative control, and cannot easily cope
with change and lack of structure. However, modern e-
commerce applications are dynamic, unpredictable,
organic, and decentralized, and require adaptability.
eXtensible Data Management (XDM) is a new approach
that enables rapid development and deployment of
networked, data-intensive services by providing
semantically-rich, high-performance middle-tier data
management, and allows heterogeneous data from
different sources to be accessed in a uniform manner.
Here, we discuss how middle tier extensible data
management can benefit an enterprise, and present
technical details and examples from the Index Fabric, an
XDM engine we have implemented.

1. Introduction

The multi-tier architecture for distributed enterprise
applications is used to provide adaptability,
interoperability, and fast time to market for enterprise
computing. The benefits are well known, and the multi-
tier approach is quickly becoming a standard, especially
for e-commerce applications [8,3]. In order to support
enterprise applications, this model must be efficient, in
terms of both high performance query processing, and
efficient development and deployment. Unfortunately, the
realization of many of the benefits of the multi-tier
architecture is hindered by traditional data management
technologies. These technologies suffer from two primary
drawbacks: (1) they were designed and optimized for
intra-enterprise, client-server applications, with clear,
rigid requirements and (2) they are not deployed in a

manner consistent with multi-tier, standards-based
distributed architectures [1,10]. A new data management
architecture is needed.

We propose an approach to this problem, called
eXtensible Data Management (XDM). The goal of XDM
is to provide high performance management of data that is
irregularly structured, or whose structure may change
over time. The system must be able to integrate new data
into the database, even if the new data has a different
schema or structure than the existing data. Users should
be able to efficiently access all data, regardless of
structure. Moreover, it should be possible over time to go
beyond merely “efficient” operations to provide highly
optimized access to data along frequently used paths. At
the same time, because the data is irregularly structured,
the data management system should provide users with
assistance in formulating queries. In other words, the data
management system should present a self-describing view
of the data that can be queried in a robust, flexible way
that is resilient to irregularity in the data.

To maximize the benefits of XDM, it is deployed
using standardized, modular components in the middle-
tier. This will allow the data management system to best
meet the needs of applications that are themselves
deployed with modular components and distributed using
middle-tier application servers. Application designers
have been able to utilize application servers that offer
clustering, fail-over and flexibility, and we hope to extend
the same benefits to XDM.

We have developed an XDM system based on a
novel technology, called the Index Fabric. The Index
Fabric has several important advantages over existing
technology. First, it does not require a pre-existing
schema for the data. Instead, the data management system
is self-describing, so that the schema can be used in a
descriptive manner to aid in formulating queries, rather
than in a prescriptive manner to restrict the form of the
data. Second, the system is dynamic, supporting the
introduction of new data types and relationships. These

www.manaraa.com

changes do not require down-time as the system is
reconfigured, and can be undertaken without interfering
with existing access patterns. Third, the system is
efficient and highly scalable, providing order of
magnitude performance improvements over traditional
systems, even as the size and complexity of the data
grows. In previous work [5], we have examined the core
technology of the Index Fabric, specifically in the context
of managing semistructured data such as XML. Here, we
examine how to deploy and exploit this technology in a
multi-tier e-commerce architecture.

In this paper, we discuss how extensible, middle-tier
data management can address the twin challenges of
flexibility and efficiency for today’s e-commerce
applications. Specifically, we make several contributions:
• We present an architecture for deploying eXtensible

Data Management in the middle tier of an e-
commerce application.

• We discuss implementing XDM with the Index
Fabric, an engine that supports schema flexibility and
robust, flexible queries, while providing high
performance.

• We illustrate the challenges and solutions of
extensibility using a case study.
This paper is organized as follows. Section 2

introduces the case study that we use as a running
example. Section 3 outlines the benefits of deploying
extensible services in the middle tier. In Section 4, we
discuss the technical details of the Index Fabric, an XDM
engine that provides a unique combination of flexibility
and efficiency. Section 5 will revisit the case study to
show how XDM can be applied. In Section 6 we examine
traditional solutions, and in Section 7 we discuss our
conclusions.

2. Case study

We will use a hypothetical case study of “Acme
Industrial Parts.” This case study illustrates the challenges
faced when a large diverse enterprise tries to leverage
data management for e-commerce, and how an XDM
system based on the Index Fabric can help.

Acme is a well-known name in industrial parts, and
has several different selling venues. Acme sells its parts
directly to large customers, as well as through retailers
such as hardware stores. Some orders are placed via
Acme’s sales force, using a custom built sales application,
while some are placed through a web portal. Acme needs
a data management system to manage its products and
provide information about the products to each of these
venues, as well as to manage inventory and other internal
product information.

Acme faces a number of challenges in trying to use
traditional systems to manage its sales and inventory:

Each application has different data needs. Although
some of the needs overlap, some are quite different. It is
possible to create a global schema that serves all of the
business needs and processes, but such a schema is likely
to be complex and unwieldy. In contrast, a lowest
common denominator schema can be defined containing
only the elements needed by all applications, but this
schema would not serve any application particularly well.

Acme can choose to build separate back-ends
customized for each application. However, this limits the
ability to keep all of the back-ends consistent (e.g. new
products must be manually loaded in each of the
databases according to the local schema). Moreover, these
custom back-ends need to be integrated with the
enterprise-wide inventory system.

New services are hard to deploy. For example, to add
a “custom built industrial parts” service, Acme must
create a new database to support that application. This
requires glue code to be manually written to integrate that
system with others such as the inventory system. If Acme
decides not to create a new database, then it must be able
to extract appropriate information for the new service
from existing databases, even if none of the existing
databases are a close fit with the new service.

The system must be efficient and scalable. Acme is
always creating more products, producing more
information related to its products, and acquiring
competitors that have their own product databases. Acme
cannot use a solution that is flexible if the solution does
not scale.

Clearly, Acme needs a new kind of data management
solution. This solution must be able to support multiple
different access patterns over the same data. It should be
able to store relevant information for each product,
without requiring that every product record fit a uniform,
global schema. The system should also support evolution
of the database to provide new services in the future, and
do all these things with high performance.

3. Data management in the middle-tier

There are many longstanding and well-understood
arguments for moving applications to the middle tier
[8,3]. The traditional client-server architecture is being
rapidly replaced by the superiorn-tiered alternative. The
middle tier is an appropriate place for XDM, since there
are unique benefits to deploying data services in the
middle tier that cannot be realized in any other
deployment. These benefits are realized compared to
alternate architectures: either placing XDM at the “front-
end” (application layer or above, see Figure 1) or at the
“back-end” (the database.)

Integration: Middle tier data management allows us
to integrate multiple schemas and sources to provide a
powerful interface for all front-end applications.

www.manaraa.com

Deploying XDM in the middle tier avoids the need to
reimplement integration in every front-end application.
This allows Acme to bring together databases that may
have been developed separately for each warehouse or
each business unit.

Redeployment: Business components can be
relocated between clients and servers without impacting
the architecture of either. This means Acme can upgrade
its XDM infrastructure without recompiling and
redeploying front-end applications or application server.
It also allows redeployment to happen despite
heterogeneity of back-end architectures. Moreover, since
the deployment is centralized, the management is
centralized as well, and thus more efficient.

Clean separation:Data management processes can
be isolated from arbitrary restrictions imposed by specific
implementations. The front-end architecture is often
dictated by the needs and capabilities of the various Acme
user groups, and may not be appropriate for data
management tasks. The back-end architecture may be
dictated by the requirements of the database system or by
Acme’s large infrastructure investment, and may not be
adaptable to the needs of XDM. Clean separation also
makes it easier to deploy new applications and databases
into the system, since they merely have to understand the
relevant APIs in order to interoperate.

Load balancing and work distribution:Acme can
enhance scalability by providing parallel clusters in the
middle tier to run XDM services. Managing data at the
back-end makes load balancing quite difficult, as there is
no global external view of incoming requests (and
knowledge of peers may be equally limited). Front-end
developers should be able to focus on business logic and

presentation, and not have to worry about the mechanics
of load balancing.

Figure 1 shows the XDM server conceptually in a
new middle tier layer. In the actual implementation, the
XDM may be encapsulated in a server in its own layer, or
may be integrated with the application server (e.g. as the
persistence mechanism of a J2EE Enterprise Java Beans
layer) The latter option is useful to eliminate network
communication latency between the application server
and separate XDM server.

4. The Index Fabric

We have argued that an appropriate architecture for
eXtensible Data Management is to provide extensibility
via a middle tier component. However, there must be a
core technology to provide these services that has the
required flexibility and scalability. We have implemented
the Index Fabric, a data management engine that is a good
substrate for XDM capabilities. The Index Fabric
represents a new approach to data management that offers
both flexibility and high performance. The key
components of the Index Fabric are:
• The data representation, which is self-describing and

provides the flexibility.
• The indexing structure, which provides the efficiency

and scalability.

4.1 Index structure

The indexing system is a novel, multilayered index
based on Patricia tries [12]. Patricia tries are like normal
tries, except they only index the differences between keys

Web browsers

Figure 1. Multi-tiered application architecture with eXtensible Data Management layer.

Web Server

Application server

XDM Server

Relational database

Client

Presentation

Application

Persistence

Data Management

Legacy database XML Database

www.manaraa.com

instead of whole keys. This means that the index scales
well, since it grows slowly as new keys are inserted.
Moreover, the size of the index depends only on the
number of indexed keys, not on the length of keys. This
means that the Patricia tries can manage large numbers of
long (and thus complex) keys and remain compact. The
Index Fabric applies successive layers of Patricia tries to
provide balanced, efficient access even if the trie is highly
unbalanced. This novel extension to a basic Patricia trie
index minimizes the disk I/O’s needed to perform a
search. In our implementation, a single index disk I/O is
needed for any search, even if the database contains a
billion items. Updates can be handled by first performing
a search (using the multilayer structure) to find the
appropriate portion of the index, and then updating the
affected blocks.

We focus here on applying the Index Fabric to the
problem of eXtensible Data Management for e-
commerce. For more details about the data structure and
algorithms, see [5,6].

4.2 Self-describing data

Keys indexed by the system have embedded semantic
hints that describe the nature of the managed data. This
feature is necessary to support irregular, non-uniform and
dynamic schemas, since XDM system can reflect the
actual structure of the data, without having to translate it
into a single, uniform schema. It is also necessary to
support robust, exploratory search, since the self-
describing elements can help the user in formulating
queries by revealing what types of information are
available in the database. The indexed keys with
embedded hints are mapped to data items in the database;
however, the data items themselves remain stored in their
native form.

The Index Fabric embeds semantic hints by
representing data asdesignated strings. A designator is a
special character or string of characters that has semantic
meaning. The combination of designators and the
matching semantic concepts (found in the designator
dictionary; see Section 4.3) makes the data self-
describing. For example, Acme might assign the
designatorT to “item type,” D to “dimensions” andP to
“price.” Then, a particular item such as a drill can be
represented as the keys “T Drill [242]”, “ D 11in x 5 in x 7
in [242]”, “ P $64 [242]”; this encodes that item 242 is a
drill, with dimensions of 11in x 5 in x 7 in, and which
costs $64. (The object ID 242 may be an XML document
number, a rowid in a relational database, an OID in an
object oriented database, or any appropriate data pointer.)
A different item may be encoded as “T Hammer [165]”,
“C Red [165]”, “P $12”; this is a red hammer that costs
$12 (if C is “Color”). These items may have come from
the same data source, such as the Acme inventory

database. Alternately, the second item may have its own
schema because it originally resided in a different
database, such as the inventory database of a company
Acme acquired. By encoding both records using the same
metaphor (designated keys), schema flexibility is
possible, since the data engine only has to manage
designated strings and does not require a uniform schema
or data format. Moreover, the designators assist searches,
since the data engine itself can indicate to users that some
items have color information, and other items have
dimension information. The system does not have to
maintain explicit NULLs to indicate that a record does not
have an attribute.

Note that the task of choosing appropriate self-
describing semantic hints is not trivial. We are not trying
to solve the problem of automatically extracting semantic
information from source data or a full ontological markup
language. Instead, we hope to provide the basic building
blocks, in the form of designators, for managing and
searching information with high efficiency. We also
assume that a mechanism exists for dealing with varying
formats for the data itself. For example, one price may be
represented as “$5” while another is represented as “5
US$”. A data cleaning step or wildcards in the query
language are traditionally used to manage such
discrepancies, and can be applied here as well.

Within the same XDM system, Acme can manage
sales information. Figure 2 shows a portion of the index
for invoices; this illustrates how designated records are
represented in the Patricia trie structure. (For clarity, the
multilayer structure is omitted in the figure.) Designators
in this example are strings constructed from individual
semantic concepts, and the following concepts are used in
the figure:

invoice = I
buyer = B
name = N

address = A
seller = S
item = T

phone = P
count = C

To search the index in Figure 2, the system constructs
a search key based on the user query. Thus, to search for
invoices where ABC Corp. is the buyer, the system would
search for “IBN ABC Corp.” This is done by starting at
the root (the node labeled “0”), and following the
appropriate edges (labeled “I”, “ B”, etc.) until the correct
data record is reached.

4.3 Dynamic structure

The data engine is able to manage new types and
structures of data over time. This is important to support
seamless integration of new data sources, which may have
schemas different from the existing database. Moreover, it
is possible to enhance the existing data by adding new
tags. For example, Acme may decide to add a new

www.manaraa.com

attribute, “weight,” to its product records. This is done
simply by creating a new designator for the new attribute,
and then inserting keys encoded with the new designator.

The Index Fabric tracks dynamic tags via a
designator dictionary, which allows designators to be
mapped to semantic concepts. In the case of Acme, the
dictionary keeps the relationships (T → type, D →
dimensions,P → price, …). Because new mappings can
be added to the dictionary at any time, new designators
can be created to support new semantic concepts. Adding
new concepts is also efficient, requiring only the addition
of a new mapping to the dictionary and then new
designated strings to the data system. These tasks do not
disrupt existing data access paths or applications.
Moreover, the designator dictionary provides additional
flexibility, such as the ability to update mappings (e.g.
change “price” to “cost”) or map multiple concepts to the
same designator (e.g. map both “price” and “cost” toP).
This flexibility is an advantage of using designators to
represent semantic information.

4.4 First-class relationships

The XDM system manages important relationships
between data items as first class objects. This means that
relationships are explicitly materialized, and managed in
the same way that data items are managed. This allows us
to efficiently deal with complex relationships, since these
relationships do not have to be reconstructed at query
time (e.g. using joins in a conventional tuple-oriented
representation). Moreover, if the relationships are first-
class objects, they are managed as self-describing items.
This supports query formulation, since the user or
application can browse the XDM system to determine
what relationships exist between the data items. For
example, after reaching the node labeled “1” in Figure 2,
the user can see what types of objects (in this case, buyer
B, sellerS, and itemlistT) are related to invoices.

The Index Fabric manages important relationships by
representing them as designated strings, just like normal
data elements. For example, to represent the fact that an
item “T drill bit [789]” is to be used with another item “T

1

2
2 2

B

S

T

100

A

N

P

A O

I B N ABC
Corp [123]

I B N XYZ
Corp [543]

I B A 1
Industrial
Way [123]

0
I

I B P 555-
1212 [543]

100

A
N

A I

I S A 2
Acme Rd.
[123]

I S N
Acme Inc
[123]

I S N Acme
Inc. [543]

I T
drill
[123]

I T
saw
[123]

d s

C
N

I T C 4
[543]

I T N Nail
[543]

...
...W

Z

2 3

I T C 3
[123]

I T C 2
[123]

100

(blank)

100 C

B Designator

A Normal character data

I T C 4
[543]

Designated string (with
[invoice number])

Figure 2. Patricia trie index for invoices.

www.manaraa.com

drill [988],” the database administrator can direct the
system to materialize the key “T drill [988] T drill bit
[789].” This key is treated the same as any other
designated string, and thus is a first-class object. To
search for bits for a particular drill, we can search for
keys prefixed by “T drill [988] T drill bit.” Similarly, a
search for keys prefixed by “T drill [988]” returns
everything related to that drill item, either returning the
designators describing related item types, or returning the
related items themselves (depending on the user
requirements.)

4.5 Efficiency and scalability

The Index Fabric provides highly efficient and
scalable data management, which allows the system to
support large numbers of designated keys with high
performance. The system is scalable in terms of: the
amount of data managed (because of the small index
size), the complexity of the data (because of the support
for long, designated strings), and the number of access
paths through the data (because of the ability to manage
multiple paths in a single, compact index). Newly
integrated data can be queried efficiently along “raw
access paths” that follow the structure of the data. Over
time, as the importance of certain alternative access paths
becomes apparent, a data administrator can add “refined
access paths” that provide optimized access along these
paths. (See [5] for a detailed discussion of raw and refined
paths). Many access paths can be optimized in this way
because new access paths are represented simply as keys
in the index, and keys can be added to the index cheaply
due to the compression provided by Patricia tries.

The multilayer Patricia trie index provides fast
lookups and updates, even if the database is large.
Moreover, the length of keys does not impact efficiency.
In previous work [5] we have compared using a popular
commercial relational database with and without the
addition of a middle tier Index Fabric XDM system.
Adding the Index Fabric increased the performance of the
system by an order of magnitude or more. Moreover, as
the complexity of the data and queries grew, the
performance gain provided by the Index Fabric also grew,
demonstrating that the flexibility of the Index Fabric
XDM does not come at the cost of performance.

In the example of Acme, a scalable and efficient
Index Fabric means that new services can be deployed,
and an ever-increasing product line managed, without fear
of bogging down the whole system. This frees the
company to invent new ways to serve customers, without
having to worry about whether the underlying data
management system is up to the task.

5. Acme revisited

By deploying XDM in the middle tier, Acme can
support rapid development of applications. Moreover,
using the Index Fabric as the basis for XDM provides a
high performance, scalable solution. We have
implemented the Product Directory, an application that
companies such as Acme can use to manage direct sales.
The Product Directory application leverages the
extensibility of the Index Fabric XDM layer to provide
several key features; in this section, we focus on two such
features: 1) the ability to integrate new product data into
an existing directory, and 2) the ability to browse the
evolving structure of the database.

From time to time, Acme must add new product
records to the directory. These records may not match the
schema of the existing products, such as when Acme
acquires a company and wants to integrate its existing
product database. Integration is done using the “publish
catalog” function of the Product Directory. Figure 3
shows a screenshot of the interface to the application. On
the left of the screen (“My Catalog”) is the schema of the
new data to be integrated. On the right of the screen is the
external view of the current integrated database
(“eMarket”).

A user can create a mapping between the attributes in
the new data and attributes that already exist in external
view. For example, the “speed” attribute of the new
product may match the existing “speed” attribute, but the
“wt.” attribute may have to be mapped to an existing
“weight” attribute. This mapping leverages the designator
structure within the Index Fabric: each attribute is
mapped to a designator, and multiple attributes can map
to the same designator. As a result, once records are
added to the index, they are searchable by existing
applications, because the attribute names are represented
internally using designators that already work for the
existing applications. If the new products have attributes
that do not match any existing attributes, then the “Add
new attribute” function can be used. This efficiently
changes the schema of the underlying database, because
new designators can be added without rebuilding the
whole index.

The search function is similarly flexible. Users can
navigate the relationship structure of the database directly
to find the products they need. This navigation follows
the relationship structure that exists explicitly in the Index
Fabric. The screenshot in Figure 4 illustrates a form of
exploratory search, where the application gives feedback
about which attributes are available and which may be
relevant to the current search. The user has performed a
basic search (for example, on a keyword) and the system
has returned a large result set. Now the user can focus the
search, based on the attributes that exist for the products
in that result set. The “Include Attribute” column allows

www.manaraa.com

the user to decide which attributes to search on, chosen
from the list in the “Name” column. “Relevancy”
indicates the proportion of the result set that has the
named attribute. For example, 100 percent of the returned
products have a “supplier name” attribute, while only 40
percent have a “ram” attribute. The relevancy is provided
from the designator information in the index, and is used
to reorganize the user interface (in this case by sorting the
attributes). This illustrates how the self-describing nature
of the Index Fabric allows the application to dynamically
adapt to the user’s current needs.

The flexibility of the Index Fabric means that this
application can be built easily. The efficiency and
scalability of the Index Fabric means that the application
performs well, even for large product databases.

6. Existing solutions

Other approaches have been suggested for providing
adaptable data management over heterogeneous sources.
One possibility is to use a wrapper/mediator architecture
[2,7,11,15]. In this approach, a common data schema is

defined, and a wrapper is created for each data source to
translate between the common schema and the source’s
native interface. A mediator handles the task of accepting
queries, forwarding them to the appropriate wrappers, and
collating the results. Unfortunately, significant work must
be expended to create a wrapper for every new source that
enters the system. Moreover, it is often necessary to
reconfigure or rewrite the wrappers and mediator to
handle new services. Thus, while mediators can integrate
heterogeneous sources, they are too inflexible for
dynamic environments.

Another possibility is to provide unstructured access
to the data [13,14]. This solution is similar to a web-
search engine: searches are formulated as key words, and
the data engine performs full-text searches over the
databases [4,9]. This solution overcomes the problem of
heterogeneity of structure. Moreover, the search cannot
take advantage of semantic information present in the
structure of the data. Thus, a great many results can be
returned that are not relevant to the search, and must be
filtered by the user or end application. At the same time,

Figure 3. The publish function of the Product Directory.

Schema to integrate

Attributes to map to

Add attribute function

www.manaraa.com

the underlying sources may not provide full-text search
capability, eliminating this as a feasible option.

7. Conclusion

E-commerce applications are placing ever greater
demands on enterprise data management infrastructure.
eXtensible Data Management provides features key to
rapid development and deployment of new services, while
maintaining and evolving existing applications. These
features include the ability to integrate multiple sources,
manage dynamic and irregular schemas, provide
assistance in formulating queries, and manage complex
relationships, all while providing high performance and
encapsulating data management. At the same time, we

have argued that these data services should exist in the
middle tier, to provide such benefits as source security,
efficient redeployment, and enhanced modularity. An
implementation of XDM, such as our Index Fabric, can
provide immense benefits, both in the short term and over
time, to developers of e-commerce applications.

References

[1] R. Agrawal, A. Somani and Y. Xu. Storage and querying of
e-commerce data. InProceedings VLDB, September 2001.

[2] Y. Arens, C. Chee, C. Hsu and C. Knoblock. Retrieving
and Integrating Data from Multiple Information Sources. In
Journal of Intelligent and Cooperative Information
Systems, Vol. 2, June 1993.

Figure 4. Exploratory search interface.

Attributes to search

Potential attributes

Relevancy

www.manaraa.com

[3] C. Berg. The state of Java application middleware, part 1.
JavaWorld, March 1999.

[4] W. Cohen. A web-based information system that reasons
with structured collections of text. InProceedings of
Autonomous Agents AA-98(1998), 400-407.

[5] B. Cooper, N. Sample, M. Franklin, G. Hjaltason, and M.
Shadmon. A fast index for semistructured data. In
Proceedings VLDB,September 2001.

[6] Brian Cooper and Moshe Shadmon. The Index Fabric:
Technical Overview. Technical Report, 2000. Available at
http://www.rightorder.com/technology/overview.pdf.

[7] H. Garcia-Molina et al. The TSIMMIS approach to
mediation: data models and languages. Journal of
Intelligent Information Systems, 8:117--132, 1997.

[8] L. Haas et al. Optimizing Queries across Diverse Data
Sources. InProceedings VLDB, September 1997.

[9] A. Howe, and D. Dreilinger. SavvySearch: A MetaSearch
Engine that Learns Which Search Engines to Query. AI
Magazine, 18(2), 1997.

[10] A. Jhingran. Moving up the food chain: supporting e-
commerce applications on databases. SIGMOD Record,
29(4): 50-54, December 2000.

[11] W. Kent. Solving domain mismatch and schema mismatch
problems with an object-oriented database programming
language. InProceedings VLDB, September 1991.

[12] Donald Knuth.The Art of Computer Programming, Vol.
III, Sorting and Searching, Third Edition.Addison Wesley,
Reading, MA, 1998.

[13] A. Salminen and F.W. Tompa. Pat expressions: an algebra
for text search. Acta Linguista Hungarica 41, pages 277-
306, 1994.

[14] VanRijsbergen, C. J. Information Retrieval. London:
Butterworths, 1979.

[15] G. Wiederhold and M. Genesereth. The conceptual basis
for mediation services. IEEE Intelligent Systems, pages 38-
47, September/October 1997.

